skip to main content


Search for: All records

Creators/Authors contains: "Liu, Chen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Microgravity offers an enticing synthetic knob for materials scientists to explore—however, this environment creates major challenges in hardware development that can turn a simple 3-day experiment into a 3-year long nightmare. This paper provides an overview of engineering an autoclave, compatible with NASA’s Solidification Using a Baffle in Sealed Ampoules (SUBSA) furnace, to enable microgravity hydrothermal synthesis—an acceleration-sensitive technique that processes aqueous samples above the boiling point of water. Hydrothermal synthesis is a universal chemical transformation technique that is used to produce a range of advanced materials with applications in alternative energy, healthcare, and the food industry. In this work, we use the synthesis of graphene hydrogel as a case study to verify our hardware design on Earth before launching to the International Space Station for microgravity testing. The design addresses pertinent challenges which include enabling thermal expansion while preventing air bubble formation in solution and implementing a pressure fail-safe above the maximum operating temperature. Our goal in presenting this autoclave design is to provide a step forward towards commercial-of-the-shelf microgravity hardware.

     
    more » « less
  2. Free, publicly-accessible full text available January 1, 2025
  3. Ferrimagnets have received renewed attention as a promising platform for spintronic applications. Of particular interest is the Mn4N from the ε-phase of the manganese nitride as an emergent rare-earth-free spintronic material due to its perpendicular magnetic anisotropy, small saturation magnetization, high thermal stability, and large domain wall velocity. We have achieved high-quality (001)-ordered Mn4N thin film by sputtering Mn onto η-phase Mn3N2 seed layers on Si substrates. As the deposited Mn thickness varies, nitrogen ion migration across the Mn3N2/Mn layers leads to a continuous evolution of the layers to Mn3N2/Mn2N/Mn4N, Mn2N/Mn4N, and eventually Mn4N alone. The ferrimagnetic Mn4N, indeed, exhibits perpendicular magnetic anisotropy and forms via a nucleation-and-growth mechanism. The nitrogen ion migration is also manifested in a significant exchange bias, up to 0.3 T at 5 K, due to the interactions between ferrimagnetic Mn4N and antiferromagnetic Mn3N2 and Mn2N. These results demonstrate a promising all-nitride magneto-ionic platform with remarkable tunability for device applications.

     
    more » « less
    Free, publicly-accessible full text available August 21, 2024
  4. Hedden, Abigail S. ; Mazzaro, Gregory J. ; Raynal, Ann Marie (Ed.)
    Research into autonomous vehicles has focused on purpose-built vehicles with Lidar, camera, and radar systems. Many vehicles on the road today have sensors built into them to provide advanced driver assistance systems. In this paper we assess the ability of low-end automotive radar coupled with lightweight algorithms to perform scene segmentation. Results from a variety of scenes demonstrate the viability of this approach that complement existing autonomous driving systems. 
    more » « less
    Free, publicly-accessible full text available June 14, 2024
  5. Graphene aerogel (GA), a 3D carbon-based nanostructure built on 2D graphene sheets, is well known for being the lightest solid material ever synthesized. It also possesses many other exceptional properties, such as high specific surface area and large liquid absorption capacity, thanks to its ultra-high porosity. Computationally, the mechanical properties of GA have been studied by molecular dynamics (MD) simulations, which uncover nanoscale mechanisms beyond experimental observations. However, studies on how GA structures and properties evolve in response to simulation parameter changes, which provide valuable insights to experimentalists, have been lacking. In addition, the differences between the calculated properties via simulations and experimental measurements have rarely been discussed. To address the shortcomings mentioned above, in this study, we systematically study various mechanical properties and the structural integrity of GA as a function of a wide range of simulation parameters. Results show that during the in silico GA preparation, smaller and less spherical inclusions (mimicking the effect of water clusters in experiments) are conducive to strength and stiffness but may lead to brittleness. Additionally, it is revealed that a structurally valid GA in the MD simulation requires the number of bonds per atom to be at least 1.40, otherwise the GA building blocks are not fully interconnected. Finally, our calculation results are compared with experiments to showcase both the power and the limitations of the simulation technique. This work may shed light on the improvement of computational approaches for GA as well as other novel nanomaterials. 
    more » « less
    Free, publicly-accessible full text available August 23, 2024
  6. Abstract

    Here, we describe surface functionalized, superparamagnetic iron oxide nanocrystals (IONCs) for ultra-high PFAS sorption and precise, low energy (magnetic) separation, considering perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). As a function of surface coating, sorption capacities described are considerably higher than previous studies using activated carbon, polymers, and unmodified metal/metal oxides, among others. In particular, positively charged polyethyleneimine (PEI) coated IONCs demonstrate extreme sorption capacities for both PFOA and PFOS due to electrostatic and hydrophobic interactions, along with high polymer grafting densities, while remaining stable in water, thus maintaining available surface area. Further, through a newly developed method using a quart crystal microbalance with dissipation (QCM-D), we present real-time, interfacial observations (e.g., sorption kinetics). Through this method, we explore underpinning mechanism(s) for differential PFAS (PFOA vs PFOS) sorption behavior(s), demonstrating that PFAS functional head group strongly influence molecular orientation on/at the sorbent interface. The effects of water chemistry, including pH, ionic composition of water, and natural organic matter on sorption behavior are also evaluated and along with material (treatment) demonstration via bench-scale column studies.

     
    more » « less
  7. Ordered porous RGO/SnO2thin films for ultrasensitive humidity detection at room temperature.

     
    more » « less
    Free, publicly-accessible full text available July 20, 2024
  8. Free, publicly-accessible full text available September 1, 2024
  9. Magneto-ionics has emerged as a promising approach to manipulate magnetic properties, not only by drastically reducing power consumption associated with electric current based devices but also by enabling novel functionalities. To date, magneto-ionics have been mostly explored in oxygen-based systems, while there is a surge of interest in alternative ionic systems. Here we demonstrate highly effective hydroxide-based magneto-ionics in electrodeposited α-Co(OH) 2 films. The α-Co(OH) 2 , which is a room temperature paramagnet, is switched to ferromagnetic after electrolyte gating with a negative voltage. The system is fully, magnetically reversible upon positive voltage application. The origin of the reversible paramagnetic-to-ferromagnetic transition is attributed to the ionic diffusion of hydroxyl groups, promoting the formation of metallic cobalt ferromagnetic regions. Our findings demonstrate one of the lowest turn-on voltages reported for propylene carbonate gated experiments. By tuning the voltage magnitude and sample area we demonstrate that the speed of the induced ionic effect can be drastically enhanced. 
    more » « less